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1. Introduction 

  The purpose of this report is to detail one of the five analyses that Dr. Razavian requested 
that the team perform for the Flying Squirrel robot.  He requested that a structural analysis be 
performed on the top and bottom halves of the robot’s design, an analysis on the torque all four 
motors will experience to output the desired force, as well as the speed the motors will need to turn 
to move the robot at the desires speed, and the total power the robot will need for all of its motors 
and other systems. The analysis I performed was the torque experienced by the motors, and the 
process used is detailed below. Several prediction calculations were performed, and a MATLAB 
script was created to determine the average and maximum torque values. These results were used 
as a factor in determining the appropriate motors for the Flying Squirrel.  

2. Torque Estimate Analysis 

2.1 Initial Estimate 

For the second presentation, a torque estimation of the driving motors was performed for 
the mathematical modelling section. The first of the guiding assumptions used in these 
calculations were that the cable tension was at the maximum amount of force as detailed in our 
engineering requirements, which was 10N. The second was that it was only accounting for one 
motor, with the third assuming that the robot was in equilibrium. The last guiding assumption 
was that the motor’s winch had a radius of 0.5 inches. A summary of this initial estimation is 
included below. The result of this calculation was that the maximum applied torque onto the 
motors would be 0.127 Nm.  

𝐹 = 10𝑁  - Maximum required tension of the wires  

𝑟 = 0.5 𝑖𝑛 = 0.0127𝑚  - Radius of the winch 

𝜏  - Estimated maximum torque 

 

  𝜏 = 𝐹 × 𝑟 = 0.127𝑁𝑚           (Eq 1) 

2.2 Safety Considerations 

After presenting these results in a client meeting the following week, Dr. Razavian suggested 
a factor of safety of 2 should be applied to the estimate. The summary of that calculation is 
listed below. He told the team to work on a MATLAB script to calculate the torques in different 
positions the robot could be, and said that we should expect the values from the script to be 
similar to the adjusted estimation.  

 𝜏 = 0.127 𝑁𝑚  - Calculated torque 

𝐹. 𝑂. 𝑆. = 2  - Factor of safety 

 𝜏𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑  - Estimated maximum torque adjusted by the factor of safety 



𝜏𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =  𝜏 × 𝐹. 𝑂. 𝑆. = 0.254 𝑁𝑚            (Eq 2) 

2.3 Secondary Estimations 

While the MATLAB script was in development, another set of estimations were conducted 
for the third presentation’s mathematical modelling section. These calculations are summarized 
below, and their guiding assumptions were that all three driving motors were being utilized, 
and the robot was static after movement, since all three motors would be employed in such a 
scenario. A winch diameter of 40mm was assumed, as was a distance between the robot and the 
anchors being 46.6 inches, both of which were derived from Justin’s speed calculations for the 
same presentation. The last guiding assumptions were that the cables were coming out of the 
top of the robot, meaning that the forces would be at an angle, and that the driving motors 
would experience the maximum amount of torque when the robot was extended to its 
maximum height. These calculations were conducted at multiple locations the robot could 
move to in an effort to locate the highest torque needed, with the cable lengths and angles being 
provided by Justin or by trigonometry. The “Top,” “Right,” and “Left” indicators next to the 
answers below indicate the cable they belong to, relative to looking down from above the table. 

For the robot being on the edge of a 6-inch radius area of play, with 2 cables being at equal 
lengths between the robot and the respective anchors (Determined to be where the highest 
torque will be experienced in the designated area of play): 

𝑟 = 20𝑚𝑚  - Radius of the new winch 

𝐿𝑇𝑜𝑝 = 𝐿𝑅𝑖𝑔ℎ𝑡 = 45.895 𝑖𝑛  - Length of the cables on the top and right sides of the robot 

  𝐿𝐿𝑒𝑓𝑡 = 54.599 𝑖𝑛  - Length of the cable on the left of the robot 

𝐿𝑧 = 19 𝑖𝑛  - Vertical component of the cable’s length 

ℎ = 19 𝑖𝑛  - Maximum height of the driving winches when the robot is fully extended 

  𝜃1 = 133°  - Angle between horizontal components of the top and right cables 

  𝜃2 = 113.5°  - Angle between horizontal components of the top and left cables 

  𝜃3 = 113.5°  - Angle between the horizontal components of the left and right cables 

  𝐹 = 10𝑁  - Tension of the cables 

  ∅  - Angle between the cables and the horizontal plane 

𝐿𝑥𝑦  - Horizontal component of the cable’s length 

 

  ∅ = sin−1 (
ℎ

𝐿
) = 24.456° (𝑇𝑜𝑝);  24.456° (𝑅𝑖𝑔ℎ𝑡);  20.365° (𝐿𝑒𝑓𝑡)     (Eq 3) 



  𝐹𝑥𝑦 = 𝐹 ∗ cos(∅) = 9.103𝑁 (𝑇𝑜𝑝);  9.103𝑁 (𝑅𝑖𝑔ℎ𝑡);   9.375𝑁 (𝐿𝑒𝑓𝑡)     (Eq 4) 

𝐹𝑧 = 𝐹 ∗ sin(∅) = 4.140𝑁 (𝑇𝑜𝑝);  4.140𝑁 (𝑅𝑖𝑔ℎ𝑡);  3.480𝑁 (𝐿𝑒𝑓𝑡)                   (Eq 5) 

  𝜏𝑥𝑦 = 𝐹𝑥𝑦 × 𝑟 = 0.182 𝑁𝑚 (𝑇𝑜𝑝);  0.182 𝑁𝑚 (𝑅𝑖𝑔ℎ𝑡);  0.188 𝑁𝑚 (𝐿𝑒𝑓𝑡)    (Eq 1) 

𝜏𝑧 = 𝐹𝑧 × 𝑟 = 0.0828 𝑁𝑚 (𝑇𝑜𝑝);  0.0828 𝑁𝑚 (𝑅𝑖𝑔ℎ𝑡);  0.0696 𝑁𝑚 (𝐿𝑒𝑓𝑡)      (Eq 1) 

𝜏𝑚𝑎𝑥 =  √𝜏𝑥𝑦
2 + 𝜏𝑧

2 = 0.2005 𝑁𝑚 (𝐿𝑒𝑓𝑡)        (Eq 6) 

The maximum torque found for this area of play was 0.2005 Nm, and was experienced in 
the left motor. The top and right motors both experience a torque just below that, with a value 
of 0.19995 Nm. These torques, when rounded to the nearest thousandth, are essentially equal, 
being 0.2 Nm. A diagram of this location and the robot’s setup are added below, and were used 
as validation for this, showing an aerial view of the robot, with its initial position in grey and 
the edge of the area of play being shown with the darker sketch.  

 

Figure 1: Cable length and angles when robot is at the edge of its area of play  

3. Final Torque Analysis 

3.1 MATLAB Script 

 The goal of this MATLAB script was to create an iterative loop that would designate a series 
of points the robot could move to within an area of play, and then calculate the change in each 
of its cable lengths, calculate the forces, and find the torques experienced by each motor. The 
code for this is included in Appendix A. The primary change in assumptions for this code was 
that the cables would be coming out of the bottom half of the robot and would be level with its 
connection to the anchors, eliminating any vertical components of force and torque. 

 The first primary feature of this code was setting up the robot. It started by establishing the 
robot’s origin in vector form, then, after designating how far away each anchor was to be from 
the robot, it established the three anchor points, evenly spaced, in vector form. The area of play 



was then established in the form of x and y coordinates. The code first plotted the three anchor 
points and the boundaries created by them. The loop containing the other calculations also 
included a line of code that would move the robot in 10mm intervals, plotting each location 
onto the graph to visualize where the robot moves. This is shown in figure 2 below. 

 

Figure 2: Anchors, area boundaries, and robot locations along the horizontal plane 

 The maximum force was defined to be 20N, which was defined by Dr. Razavian, as he 
wanted to ensure the team could find motors that would be suitable for greater applied forces 
than the required maximum force, for safety purposes. It also served another purpose, that 
being to ensure the motors used are not going to constantly run at their maximum capacity, 
which would damage the motors.  

 During a client meeting, Dr. Razavian also specified that the 20N of applied force would be 
from the user, not the cables, and instead the code needed to include the force having the ability 
to be applied in all directions, and the torques calculated would be the torques required for the 
robot to move against that applied force. Ryan assisted with this portion of the code, and helped 
incorporate the following lines of code into the MATLAB script. This allowed the force to be 
split into its x and y components, and allowed for those directions to change each iteration.  

rad(i) = ((i-1)*0.01)*pi(); 

Fx(i) = cos(rad(i))*F; 

Fy(j) = sin(rad(i))*F; 

desiredForce(:,i,j) = [Fx(i);Fy(j);0]; 

The lines in the code following this calculate the change in cable length between the anchor 
points and the robot, calculate the unit vector for each cable, and then use the unit vectors to 
apply a modifier that will help solve for the forces. These steps were specified by Dr. Razavian 
during a client meeting. Following these steps, the modifiers were used with the “desiredForce” 



variable from above, used with the “lsqnonneg” function to eliminate negative force values and 
find the real forces experienced in each cable. The calculated forces were used with a winch 
radius of 5mm to find the torques experienced by each motor at each location. Separate 
equations were used to separate the torques from the primary table into tables corresponding 
to each motor, for better visibility. The code also found the maximum torque, minimum torque, 
and summed the three torques in each position to plot on a surface plot. The surface plot is 
found in figure 3 in section 3.3. The code is not entirely perfect, but Dr. Razavian stated that it 
was good enough for the purposes the team needed it for and to move forward with what we 
have. 

3.2 Dr. Razavian’s MATLAB Script 

 Dr. Razavian created his own script as well and shared it with the team to assist us with our 
analysis. This code can be found in Appendix B. The code he wrote was far more complex, and 
included more calculations, including motor speed calculations. This proved to be helpful in this 
analysis and provided much needed direction to improve the team’s code. He also instructed us 
to use this code alongside the team’s code to find an answer for the torque each motor 
experiences to select a motor that will meet the expected torque. 

3.3 Comparison of Results 

 The code I wrote to calculate the torque applied to the motors produced an average of 
around 0.10-0.13 Nm, with a maximum torque of 0.131 Nm. These are the results when the 
anchor radius is 0.6m away from the robot. The torque values change when the anchor radius 
changes, but 0.6m was used to compare the two code’s results, since that was the value used in 
Dr. Razavian’s code. The torque from all three motors were summed for each position and 
plotted on a surface plot, shown in figure 3. 

 Dr. Razavian’s code produced an average torque of about 0.1-0.2 Nm, with a maximum 
torque of around 0.3 Nm. Dr. Razavian also plotted his results on a surface plot, which is shown 
in figure 4.  

 Comparing the results, the torque experienced by the motor ranges between 0.1-0.2 Nm of 
torque on average. Dr. Razavian’s code calculates the motor torque for the robot’s location 
within the entire triangle boundary created by the anchor points, while ours only calculates the 
torque within a small area within the boundary. Along the edges of the surface plot provided to 
us by Dr. Razavian, the torque spikes by the edges of the boundaries, which is where we see the 
torque range of 0.22 and above. The locations where these torque values are found are locations 
that would either be very difficult for the robot to get to, or would be impossible for it to move 
there, as the triangle created by the three anchor points are not the true boundary of the robot’s 
movement, since it has a maximum angle the wires can reach, which is below 180 degrees. 
Therefore, the values along the edges can be largely ignored. Comparing both the data tables 
produced by MATLAB and the surface plots, a large majority of the torque values fall between 
0.10-0.15 Nm, with many values being smaller than that range. Therefore, the maximum torque 
the motors would realistically experience would be around 0.2 Nm, with the nominal torque 
being much less than that.  



 

Figure 3: Surface plot of summed torques from the team’s code 

 

Figure 4: Surface plot of summed torques from Dr. Razavian’s code 



 The surface plot our code produced would be around the center of the surface plot Dr. 
Razavian generated. Since both are around 0.1Nm or under, it is reasonable to assume that the 
nominal torque can be lower than the predicted torque.  

4. Conclusion 

The results from this analysis show that the maximum torque for the driver motors is about 
the same as the torque that was initially estimated. Dr. Razavian has expressed that he wants gimbal 
motors to be used as our driver motors, and using the results from this analysis, he has requested 
that the team choose a motor that has a nominal torque of 0.15Nm. As for the maximum torque, he 
requested that the team choose the maximum value, which has been chosen as a range between 0.2 
and 0.25 Nm, with the other specifications taking priority, so as long as the maximum torque falls 
within that range with the rest of the specifications meeting the other requirements, that motor will 
be deemed appropriate for use in this project. The robot will also be incorporating a fourth motor, 
which will be driving the two lead screws to raise and lower the robot. There’s no analysis for that 
motor, because Dr. Razavian has already given us the specifications to use when researching motors. 
The nominal torque and RPM values he has instructed the team to use are 0.15 Nm and 6000 RPM, 
respectively. The team is researching gimbal motors and other motor types that will provide the 
necessary torque and speed required, while not drawing a significant amount of power. There have 
been several promising discoveries that will be reviewed in the next meeting. Moving forward, the 
team will be running extensive tests on any motor that is ordered, and if the torque requirements 
change, these results will be updated accordingly.  

  



 

Appendix A: Team’s Motor Torque MATLAB Script 

clear; clc; close all; 

% Robot Position 

R = [0;0;0]; % Robot Starting Postion 

R0 = R.*[1;1;0]; % Robot Base Position 

% Winch Radius:  

r = 0.005; % m 

% Magnitude of Desired Force: 

F = 20; % N 

 

% Anchor point locations 

% AnchorCircleRadius = 0.4572; % m (18in radius) 

% AnchorCircleRadius = 0.6096; % m (24in radius) 

AnchorCircleRadius = 0.6; 

A1 = AnchorCircleRadius*[cosd(90); sind(90); 0]; % Top Anchor 

A2 = AnchorCircleRadius*[cosd(210); sind(210);0]; % Left Anchor 

A3 = AnchorCircleRadius*[cosd(-30); sind(-30);0]; % Right Anchor 

 

X = -0.1524:0.01:0.1524; 

Y = -0.1524:0.01:0.1524; 

Z = 0; 

 

TorqueSurface = zeros(length(Y), length(X)); 

 

hold on 

plot([A1(1),A3(1),A2(1),A1(1)],[A1(2),A3(2),A2(2),A1(2)],'bo-','LineWidth',2); 

plot([R(1)],R(2)) 

 

 

for i=1:length(X) 



    for j=1:length(Y) 

        R = [X(i);Y(j);Z]; 

        plot(R(1), R(2), '.', 'Color', [0.6 0.6 0.6]); 

 

        % User applied force 

        rad(i) = ((i-1)*0.01)*pi(); 

        Fx(i) = cos(rad(i))*F; 

        Fy(j) = sin(rad(i))*F; 

        desiredForce(:,i,j) = [Fx(i);Fy(j);0]; 

 

        V1 = A1-R;  

        u1 = V1/norm(V1); 

        V2 = A2-R;  

        u2 = V2/norm(V2);  

        V3 = A3-R; 

        u3 = V3/norm(V3);  

        c1 = u1.*(1+[1;1;0]);  

        c2 = u2.*(1+[1;1;0]);  

        c3 = u3.*(1+[1;1;0]);  

        c4 = [0;0;1];  

        C = [c1 c2 c3 c4]; 

 

        wireForces(:,i,j) = lsqnonneg(C,desiredForce(:,i,j)); 

        torques = wireForces(:,i,j).*r; 

        torque1 = torques(1); 

        torque2 = torques(2); 

        torque3 = torques(3); 

        totaltorque = torque1+torque2+torque3; 

        TorqueSurface(j,i) = norm(totaltorque); 

 

        maxTension = max(wireForces(:,i,j)); 



        minTension = min(wireForces(:,i,j)); 

        maxTorque = r.*maxTension; 

 

    end 

end 

V = 1; % m/s 

 

RPM = (V*60)/(pi()*r); 

 

[Xgrid, Ygrid] = meshgrid(X, Y); 

figure(2); 

surf(Xgrid, Ygrid, TorqueSurface); 

xlabel('X (m)'); 

ylabel('Y (m)'); 

zlabel('Summed Torque (Nm)'); 

  



Appendix B: Dr. Razavian’s Analysis Code 

%% 

clearvars 

 

v = 1; % desired speed 

a = 2; % desired acceleration 

F = 20; % magnitude of the desired force 

 

T = 0; % external rotating moment on robot; 

Omega = 0; % rotational velcoity of the robot 

 

phaseshift = pi; % the angle between robot's acceleration and hand force. maximum torques at pi 

 

AnchorCircleRadius = 0.6; 

A1 = AnchorCircleRadius*[cosd(90); sind(90); 0]; 

A2 = AnchorCircleRadius*[cosd(210); sind(210);0]; 

A3 = AnchorCircleRadius*[cosd(-30); sind(-30);0]; 

 

RobotCircleRadius = 0.1; 

C1_u = [RobotCircleRadius*[cosd(90);  sind(90)] ; 0.1]; % the anchor points relative to robot's 
handle 

C2_u = [RobotCircleRadius*[cosd(210); sind(210)]; 0.1]; 

C3_u = [RobotCircleRadius*[cosd(-30); sind(-30)]; 0.1]; 

 

R = [0;0;0.1]; % robot's handle position.  

 

r_pulley = 0.005; % radius of of pulley 

screwAngle = 0.01; % some sort of pitch, like tangent of screw angle. 

 

 

 



hf999 = figure(999);  

clf(hf999) 

plot_FSquirrleBases(R,C1_u, C2_u, C3_u, A1, A2, A3, figure(999)) 

 

 

%% 

m = 5; 

 

gearRatio = 1; 

 

phiRange = 0:0.05:2*pi; 

 

xRange = -0.3:0.02:0.3; 

yRange = -0.3:0.02:0.1; 

zRange = 0.1:0.1:0.5; 

 

 

[tau_F_only_max,tau_F_only_min,omega_pulley_max,omega_pulley_min] = ... 

    deal(nan(length(xRange),length(yRange),length(zRange))); 

 

for i = 1:length(xRange) 

    for j = 1:length(yRange) 

        for k = 1:length(zRange) 

            R = [xRange(i); yRange(j); zRange(k)]; 

 

            J_inv = 
FSquirrle_Jacobian_inverse(R(1),R(2),R(3),A1(1),A1(2),A2(1),A2(2),A3(1),A3(2),C1_u(1),C1_u(2),C
1_u(3),C2_u(1),C2_u(2),C2_u(3),C3_u(1),C3_u(2),C3_u(3),r_pulley); 

            J = 
FSquirrle_Jacobian(R(1),R(2),R(3),A1(1),A1(2),A2(1),A2(2),A3(1),A3(2),C1_u(1),C1_u(2),C1_u(3),C
2_u(1),C2_u(2),C2_u(3),C3_u(1),C3_u(2),C3_u(3),r_pulley); 



            [B,~,B_l] = 
FSquirrle_bases(R(1),R(2),R(3),A1(1),A1(2),A2(1),A2(2),A3(1),A3(2),C1_u(1),C1_u(2),C1_u(3),C2_
u(1),C2_u(2),C2_u(3),C3_u(1),C3_u(2),C3_u(3)); 

             

            if min([dot(B_l(:,1),B_l(:,2)) , dot(B_l(:,1),B_l(:,3)) , dot(B_l(:,2),B_l(:,3))])<cosd(165) 

                continue 

            end 

 

            omega_pulley = []; 

            tau_F_only = []; 

            % clf(hf999) 

            % plot_FSquirrleBases(R,C1_u, C2_u, C3_u, A1, A2, A3, hf999) 

            for phi = phiRange 

                Fx = F*cos(phi); 

                Fy = F*sin(phi); 

                Fz = 0; 

 

                handForce = -[Fx;Fy;Fz]; 

                 

                lineForces = lsqnonneg(B,handForce); 

                tau_F_only = [tau_F_only, lineForces.*[r_pulley; r_pulley; r_pulley; screwAngle]]; 

 

                % ax = a*cos(phi+phaseshift); 

                % ay = a*sin(phi+phaseshift); 

                % robotAcc = [ax;ay;0]; 

                % tau_a_only = [tau_a_only, J' * (M*robotAcc)]; 

                % 

                vx = v*cos(phi); 

                vy = v*sin(phi); 

                vz = 0; 

 

                V = [vx;vy;vz]; 



                omega_pulley = [omega_pulley, J_inv*V]; 

            end 

 

            omega_pulley_max(i,j,k) = max(omega_pulley(:)); 

            omega_pulley_min(i,j,k) = min(omega_pulley(:)); 

            tau_F_only_max(i,j,k) = max(tau_F_only(1:3,:),[],'all'); 

            tau_F_only_min(i,j,k) = min(tau_F_only(1:3,:),[],'all'); 

        end 

    end 

end 

 

%% 

% tau_combined = tau_a_only + tau_F_only; 

 

figure(1); clf 

[xx,yy] = meshgrid(xRange,yRange); 

 

for i = 1:size(tau_F_only_max,3) 

    subplot(1,2,1) 

    surface(xx, yy, tau_F_only_max(:,:,i)'/gearRatio) 

    hold all 

    zlim([0,1]) 

    title('max torque') 

 

    subplot(1,2,2) 

    surface(xx, yy, tau_F_only_min(:,:,i)'/gearRatio) 

    hold all 

    zlim([-1,0]) 

    title('min torque') 

 

end 



 

 

%% 

figure(2); clf 

for i = 1:size(omega_pulley_max,3) 

    subplot(1,2,1) 

    surface(xx, yy, omega_pulley_max(:,:,i)'/gearRatio) 

    hold all 

    title('max motor speed') 

 

    subplot(1,2,2) 

    surface(xx, yy, omega_pulley_min(:,:,i)'/gearRatio) 

    hold all 

    title('min motor speed') 

 

end 

 

max(omega_pulley) 
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